
Object segmentation for bin picking using deep
learning

Artur Cordeiro1,2, Lúıs F. Rocha2, Carlos Costa2,3, and Manuel F. Silva1,2

1 ISEP/IPP - School of Engineering, Polytechnic Institute of Porto, Porto, Portugal,
2 INESC TEC - INESC Technology and Science, Porto, Portugal,

3 FEUP - Faculty of Engineering, University of Porto, Porto, Portugal,
artur.j.cordeiro,luis.f.rocha,carlos.m.costa,manuel.s.silva}@inesctec.pt

Abstract. Bin picking based on deep learning techniques is a promis-
ing approach that can solve several analytical methods problems. These
systems can provide accurate solutions to bin picking in cluttered envi-
ronments, where the scenario is always changing. This article proposes
a robust and accurate system for segmenting bin picking objects, em-
ploying an easy configuration to adjust the framework according to a
specific object. The framework is implemented in Robot Operating Sys-
tem (ROS) and is divided into a detection and segmentation system.
The detection system employs Mask R-CNN instance neural network to
identify several objects from two dimensions (2D) grayscale images. The
segmentation system relies on the point cloud library (PCL), manipu-
lating 3D point cloud data according to the detection results to select
particular points of the original point cloud, generating a partial point
cloud result. Furthermore, to complete the bin picking system is em-
ployed a pose estimation approach based on matching algorithms, such
as Iterative Closest Point (ICP).
The system was evaluated for two types of objects, knee tube and trian-
gular wall support, ion cluttered environments. It displayed an average
precision of 79% for both models, an average recall of 92% and an aver-
age IOU of 89%. As exhibited throughout the article, this system demon-
strates high accuracy in cluttered environments with several occlusions
for different types of objects

Keywords: Bin picking, Deep learning, Mask R-CNN, Grasping, Neural
networks, Artificial Intelligence, ROS, RGB-D multimodal data.

1 Introduction

Robotic bin-picking based on deep learning techniques is a technology that ap-
plies a relatively recent concept, utilizing neural networks, intending to enhance
the standard bin picking approaches. These approaches are increasingly being
used in bin picking areas due to the potential of deep learning policies to further
increase the intelligence and learning capabilities of robots.

This article provides an accurate solution to robotic bin-picking picking prob-
lems in highly cluttered environments for any type of object, similar to an indus-
trial scenario, where the robot’s objective is to pick several objects from different



2 Artur Cordeiro, Lúıs F. Rocha, Carlos Costa, and Manuel F. Silva

bins, each of them composed of only one type of object. To accomplish this task
the framework has different models that accurately detect different types of ob-
jects, alternating them according to the determined action, achieving a robust
process that detects different types of objects in highly cluttered environments
by essentially modifying only the particular Mask R-CNN trained model.

Given these ideas, and after this brief introduction, the second section details
several related works to this article. In the third section is described the deep
learning training applied to Mask R-CNN neural network with TensorFlow 2,
and details how the dataset was generated. The fourth section provides a brief
overview of the bin picking algorithm and specifies the main stages of the imple-
mented framework. The succeeding section displays several results acquired with
evaluation datasets. To conclude, the paper briefly resumes the implementation
and presents possible future developments.

2 Related work

Over the years, several methods have been developed to solve bin picking prob-
lems, such as the one proposed by Doumanoglou et al. [1] in which an unsuper-
vised feature learning from depth-invariant patches for highly cluttered environ-
ments. Pochylyet al. [2] implemented a revolving vision system with a specific
gripper for organized industrial environments. Choiet al. [3] developed a voting-
based pose estimation algorithm for highly clutter environments with several
occlusions. Yanet al. [4] implemented a pipeline for different types of objects in
cluttered scenarios using an adaptive threshold segment to accelerate the pose
estimation. Leão et al. [5] proposed a framework for entanglements objects.

This article focus on solutions based on deep learning techniques, resorting
to distinct approaches, namely neural networks, and picking orientations. Lenz
et al. [6] implemented one of the first Red, Green, Blue - Depth (RGB-D) multi-
modal parallel gripper-oriented methods, evaluating grasp candidates for random
objects (Cornell grasping dataset objects) in a scenario without occlusions, to
select the final grasps pose were applied two deep networks with two inputs RGB
and depth data. Similar to Lenz et al., Mahler et al. [7] developed a research
project for generating synthetic datasets, parallel grasps and metrics of grasps
based on physics, called Dex-Net. Dex-net 2.0 [8] presented a parallel gripper-
oriented method to rapidly predict the probability of success of grasps from
depth images.

Diverging from gripper-oriented approaches and focusing more on object-
oriented segmentation methods, Zeng et al. [9] developed an RGB-D multi-view
object-oriented approach for Amazon Picking Challenge (APC). This approach
estimates the 6D pose by segmenting and labeling multiple views of the scenario
with a fully convolutional neural network and then fitting pre-scanned 3D object
models. Le et al. [10] developed a work very similar to the proposed implemen-
tation in this article, using the same neural network (Mask R-CNN), however,
the solution proposed by these authors was for planar objects in cluttered envi-
ronments using a vacuum gripper.



Bin Picking Object Segmentation 3

3 Deep learning training

Deep neural networks are mainly known and selected from their architectures,
presenting different features, such as bounding-box, and classifications, among
many others. As for this work, it was intended to detect and segment instances
of objects in a cluttered environment. Mask R-CNN was chosen from all the
possibilities considering that in the first place was the newest stable version
of R-CNN, a neural network with good results and a lot of progress made in
the segmentation field. Secondly, in several published papers, Mask R-CNN ob-
tained results above average, surpassing a lot of other neural networks. Thirdly,
as previously described, the main objective of this implementation was to find a
specific known place of the model to grab the object, this way excluding most of
the gripper-oriented neural networks. Lastly, it is an open-source neural network
with good community support, and with exceptional results concerning the de-
tection and segmentation of different objects with several occlusions [10], [11],
[12].

Mask R-CNN consists of two stages. The first stage, called a Region Pro-
posal Network (RPN), proposes candidate object bounding boxes. The second
stage, which is in essence Fast R-CNN [13], extracts features using region of
interest pooling (RoIPool) from each candidate box and performs classification,
bounding-box regression, and outputs a parallel binary mask for each RoI [14].

Mask R-CNN was trained in a system composed of a Ryzen 5 5600x proces-
sor, GTX 1060 6 GB graphic card and 32GB DDR4 memory. Unlike the original
neural network [15], this framework was processed with TensorFlow version 2
(2.4.1), ubuntu 20.04, CUDA toolkit 11.0, Nvidia driver 450.191.01, cuDNN 8.0,
and Keras 2.4.0. This adjustment included a few changes to the neural network,
assuring the compatibility between the used Mask R-CNN framework, functions
and libraries [15], [16]. Nearly all the adjustments required were due to the
incompatibility from TensorFlow functions, such as log graph, set intersection,
among others, that changed between TensorFlow version 1 and TensorFlow ver-
sion 2 [17]. Furthermore, the dataset class in the main python training script
was adapted to load different annotations formats (JSON and COCO) from the
custom dataset generated, different neural network parameters were adjusted,
and lastly, Mask R-CNN neural network layers (2+,3+, heads,+4,...) training
procedure was adapted according to the learning results.

3.1 Dataset generation

The dataset generation was executed with real data, acquired by an RGB-D
sensor, and manually labeled by an human operator with third-party annota-
tors support. The RGB-D sensor, identified as Photoneo PhoXi 3D Scanner, is
capable of acquiring depth and grayscale data, allowing different types of deep
learning training inputs. The scanner has up to 3.2 million 3D points of resolu-
tion with a throughput of 16 million points per second, and from 384 to 520 mm
of scanning range. The resolution of the 2D images taken is up to 2060x1544,
including grayscale and depth images. It can be controlled by software, called



4 Artur Cordeiro, Lúıs F. Rocha, Carlos Costa, and Manuel F. Silva

PhoXi Control, via ethernet, which includes a Graphical User Interface (GUI)
and an Application Programming Interface (API) [18]. In this implementation,
the datasets used for both training and evaluation were divided into two models:
90º elbow tube (Model A) and triangular wall support (Model B).

The training was executed with 2D grayscale data, although in later stages
of the process was necessary point cloud data, in order to implement pose es-
timation and segmentation methods. The 3D point cloud data is automatically
generated by the sensor through multi-modal approaches from the initial data
acquisition (RGB or grayscale and depth map).

The generated dataset for model A was divided into 4 batches. The first batch
was introduced with different 3D views of the scenario, including only one tube or
model. Similar to the first, the other batches, from second to fourth, presented a
similar scenario with different views, differing in the number of objects presented,
in this case, 2 to 4 objects, respectively. The higher the number of batches, the
more complex was the environment.

The second resorted approach was very similar to model A: the dataset was
divided into three different batches, differing in the number of objects presented.
To add robustness to the model it was implemented an augmentation process,
with added noise, rotating, cropping, flipping, saturating, brightness, among
other processes, enhancing the training process.

Table 1 depicts information about the dataset generation of the two models.
Model A dataset is larger than model B, and with more geometrically complex
objects to segment, requiring on average 21 seconds to annotate a single object.
Taking into account that some images have 4 objects, it requires on average 84
seconds to complete an image annotation. Model B dataset was originally much
smaller, including 59 images with 155 annotations; however, with the application
of augmentation steps, were generated 179 images from the original 59.

Table 1. Dataset information

Dataset
Nr of
images

Nr of
annotations

Time per
annotation (s)

Model A 488 737 21
Model B 59 155 11.49

Model A + Augmentation 732 - -
Model B + Augmentation 238 - -

4 Proposed bin picking system

The basis of the system developed to detect objects in a cluttered environment is
depicted in Figure 1. As perceived in this image, there are three main areas, that
will be described, namely 2D detection, 3D Segmentation and Pose Estimation.

The idea of the proposed system was to enhance the performance of the
recognition framework, and part of the segmentation approach with techniques



Bin Picking Object Segmentation 5

Fig. 1. Object detection pipeline overview

based on deep learning methods, whilst adopting 3D point cloud based heuristics
for final the segmentation of the objects and their respective pose estimation.
The primary reasons for this proposed adjustment is that deep learning models,
when well trained, can provide a high level of robustness to the system, mean-
ing that, when encountering novel and difficult environments (highly cluttered
environments), this system can accurately segment the target objects. Another
reason is the easy system modification to detect a novel object, only requiring
a new neural network model with the knowledge to identify this new object,
therefore not involving several complex steps.

4.1 2D object detection

The detection is generated in a 2D space, resorting to an object instance seg-
mentation framework (Mask R-CNN), which can identify several segments, with
a mask and bounding box, of the same types of objects.

The detection algorithm starts by loading the specified model. After the
loading is completed and is called the process command from the client, the
algorithm waits for an image message publication to read its data (lines 3 and 4
from Algorithm 1).

After reading the input image, image processing techniques are performed to
enhance the object’s visualization. First is implemented a denoise method, with
the fastNlMeansDenoising OpenCV function, followed by a Contrast Limited
Adaptive Histogram Equalization (CLAHE). The functions were applied in this
order to first remove noise from the image, because CLAHE causes noise in near-
constant regions as the background, and to improve the contrast in the image,
improving several detections with darker images.



6 Artur Cordeiro, Lúıs F. Rocha, Carlos Costa, and Manuel F. Silva

Mask R-CNN detection, explicit in Algorithm 1 line 9, extracts the number of
objects, mask (segmentation) of each object and bounding boxes. Afterwards is
generated a 2D array with all the masks discriminated by a different id for each
instance, the number of objects, the center coordinates (x,y) of each bounding
box, and the image resolution, and is published as an 8-bit image (2D array)
topic to be received by the 3D point cloud segmentation algorithm. In the end
is published a result to the client: successful if is collected an acceptable point
cloud from the 3d point cloud sensor, and unsuccessful if the point cloud is not
acceptable or is not received.

Algorithm 1 mask img ← Object Detection(img; m)

Input: img = image; m = trained model

1: Device = ”cpu”
2: Subscribe to img topic
3: wait for img msg
4: img = fastNlMeansDenoising(img)
5: limit = exponential function(image meanvalue)
6: CLAHE = createCLAHE(cliplimit = limit; tileGridSize = (3; 3))
7: img = CLAHE:apply(img)
8: detection = m:detect(img)[0]
9: info array = instances; img:size
10: for i in range(0, instances) do
11: roi x = (rois[i; 1] + rois[i; 3])=2
12: roi y = (rois[i; 0] + rois[i; 2])=2
13: info array = info array; roi x; roi y
14: binary mask = masks[:; :; i]:astype(np:uint8) ∗ (i + 1)
15: id mask = (binary mask == (i + 1))
16: final mask[id mask] = binary mask[id mask]
17: end for
18: mask img = append(final mask; info array)
19: Publish mask img

4.2 3D point cloud segmentation

The 3D point cloud segmentation algorithm expects to receive an image ar-
ray containing all the detection information provided from Object Detection,
and the original point cloud acquired at the same time as the grayscale image.
When the point cloud is received (lines 1-2 Algorithm 2), the point cloud mes-
sage is transformed from a ROS message sensor msgs::PointCloud2 to PCL
pcl::PointCloud< XYZRGBA >.

As described in the previous sub-section, the information exported through
the image array is organized in specific variables, as presented in Algorithm 2
Lines 9-14. Succeeding the data management, the original point cloud is resized,
allowing to treat this point cloud as a 2D array with the same shape as the



Bin Picking Object Segmentation 7

original grayscale image acquired, and is computed the mean 8x8 center region
z value of each segment (instance), shown in lines 16-26 (Algorithm 2), to predict
the object closest to the sensor in line 27(Algorithm 2).

After estimating the highest point cloud segment, the segment is extracted
from the original point cloud throughout its ID (line 28 to 34 of Algorithm 2) and
are applied several filters, such as voxelgrid, pass-through and statistical outlier
removal (line 35 of Algorithm 2), that essentially were used to remove noise
and unnecessary information. This algorithm structure improves the total time
consumed because, instead of selecting and filtering every point cloud segment
detected, it only selects and filters the highest segment points, which is the
essential instance to pick up.

Algorithm 2 P ointCloud Segmentation(mask im)

Input: cloud = pointcloud

1: Subscriber to cloud msg
2: Subscriber to mask im
3: while !cloud received flag do
4: ros :: Duration(0:01):sleep();
5: ros :: spinOnce();
6: end while
7: for int i=0; i¡Instances; i++ do
8: cloud center x[i] = info array:roi x
9: cloud center y[i] = info array:roi y
10: end for
11: Resize cloud received(height ∗ width)
12: for l = 0; l < Instance; l ++ do
13: for i = cloud center x[l]− 8; i ≤ cloud center x[l] + 8; l ++ do
14: for j = cloud center y[l]− 8; j ≤ cloud center y[l] + 8; l ++ do
15: if cloud received → at(i; j):z > 0 then
16: cnt[l]++
17: h[l] = h[l] + cloud received → at(i; j):z
18: end if
19: end for
20: end for
21: h[i]= h[i] / cnt[i]
22: end for
23: higher cloud = std :: distance(h; std :: min element(h; h + Instances))
24: for int i=0; i¡width; i++ do
25: for int j=0; j¡height; j++ do
26: if id cloud(i,j)==higher cloud+1 then
27: partial cloud = push back(cloud received− > at(i; j))
28: end if
29: end for
30: end for
31: filtered cloud = F ilters(partial cloud)
32: Publish filtered cloud




