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Abstract—The estimation of a 3D sensor constellation for
maximizing the observable surface area percentage of a given
set of target objects is a challenging and combinatorial explosive
problem that has a wide range of applications for perception tasks
that may require gathering sensor information from multiple
views due to environment occlusions. To tackle this problem,
the Gazebo simulator was configured for accurately modeling 8
types of depth cameras with different hardware characteristics,
such as image resolution, field of view, range of measurements
and acquisition rate. Later on, several populations of depth
sensors were deployed within 4 different testing environments
targeting object recognition and bin picking applications with
increasing level of occlusions and geometry complexity. The
sensor populations were either uniformly or randomly inserted
on a set of regions of interest in which useful sensor data
could be retrieved and in which the real sensors could be
installed or moved by a robotic arm. The proposed approach
of using fusion of 3D point clouds from multiple sensors using
color segmentation and voxel grid merging for fast surface area
coverage computation, coupled with a random sample consensus
algorithm for best views estimation, managed to quickly estimate
useful sensor constellations for maximizing the observable surface
area of a set of target objects, making it suitable to be used for
deciding the type and spatial disposition of sensors and also guide
movable 3D cameras for avoiding environment occlusions.

Index Terms—Best views estimation, sensor placement opti-
mization, random sample consensus, bin picking

I. INTRODUCTION

Object recognition within environments with large and
dynamic occlusions is a challenging task that can be tackled
by either deploying an extensive and expensive sensor con-
stellation or by actively moving a set of sensors within the
environment in order to maximize the observable surface area
of the target objects. This is a variant of the View Planning
Problem (VPP) [1], which has a wide range of applications
within the active perception domain, such as the estimation of
the next best view for 3D scanning [2], object recognition with
occlusions, exploration of unknown environments, deployment
of sensor networks to monitor targets, among many others.

Within the active perception domain, several approaches
have been proposed depending on the particular use cases.
In [3] it was presented a probabilistic active planner using
a partially observable decision process model for improving

the perception of house hold objects that were going to be
manipulated by a dual arm robot. For active perception of
objects with similar 3D geometry but with unique 2D features,
[4] introduced an active perception system for actively looking
for bar code regions and unique text on the surface of the
objects after having a preliminary estimation of the target
object pose. To compute the next best sensor observation
pose, it was uniformly generated a set of possible viewpoints
on sections of the surface of a sphere and then it was
selected the one which achieved the best observation utility
that incorporates the quality of the pre-compute features along
with the distance that is required to move the sensor from
its current pose to the new sensor view observation pose.
On the other hand, [5] also selected the best next view by
balancing the expected information gain with the required
sensor movement while using a VP-tree for performing object
recognition and pose estimation. Another approach introduced
in [6] targeted bin picking operations and relied on randomly
deploying a set of possible views over the target objects
and then selecting the one with the best trade off between
information gain and sensor traveling cost. Unlike previous
approaches that used image or geometric features, this system
modeled each target object as a set of primitive shapes (such
as planes, cylinders and spheres) that were assembled on a
graph and recognized on the sensor data using a RANdom
SAmple Consensus (RANSAC) algorithm. Another approach
presented in [7] also starts with a randomly generated set of
viewpoints for the estimation of the first best view, but them
reduces the regions in which views are generated and favors
frontiers between known and unknown environment sections
that are stored in a voxel grid. The observation probability
was modeled as a hidden Markov model and the posterior
probability relied on a Bayes filter. In the end, the sensor view
that achieves higher information gain is selected and the world
model is updated to reflect the new observed space. In [8] it
is presented another system for active bin picking that takes
advantage of the accurate modeling of range sensors that was
presented in [9], while [10] introduces strategies to generate
sensor views targeted for object pose estimation.

Besides active perception, the best view estimation algo-
rithms can also be used to actively explore the environment979-8-3503-0121-2/23/$31.00 ©2023 IEEE

https://orcid.org/0000-0001-8453-4031
https://orcid.org/0000-0003-3044-6938
https://orcid.org/0000-0002-0317-4714
https://orcid.org/0000-0003-3211-4208
https://orcid.org/0000-0002-8680-4290


for mapping purposes using aerial vehicles in which the goal
is to estimate the minimum set of sensor views that maximize
the observation of the unknown space. The system proposed in
[11] achieves this by using a receding horizon path planning
algorithm while the approach presented in [12] expands the
observation goals further and tries to find a given target object
in a continuously updated environment. The planning of the
set of views necessary to explore the environment relied on an
octree for space modeling and randomly deployed observation
views along frontier regions that were later on analyzed and
selected based on the expected information gain and traveling
distance of the mobile robot. These exploration goals were
also taken to underwater environments by the work presented
in [13], in which special care was taken to model the sensor
data degradation over distance and the necessity of artificial
light for deep sea exploration and mapping.

Another research domain that uses best view estimation
algorithms is 3D scanning and reverse engineering [14]. In
[15] it is introduced a volumetric 3D modeling scanning sys-
tem that deploys a set of possible viewpoints on a tessellated
sphere or a cube and then based on the expected information
gain, the overlap of known and unknown regions, distance
to previous selected view and orientation of the view to the
observed surface, it selects the set of sensor views required
to perform 3D scanning and surface reconstruction of the
object. In [16], besides actively moving the sensor, it is used a
robotic manipulator for grasping an object and then estimate
the constellation of sensor views that maximize the amount
of unknown object cells that can be observed while keeping a
reasonable overlap with know regions. After finishing a set of
observations, the system chooses another grasp configuration
and tries to observe the remaining regions that were previously
occluded by the robotic arm.

A related area to best view estimation is sensor deployment
for monitoring extensive areas in order to track a set of interest
objects or providing a communication infrastructure. In [17] it
is introduced an adaptive 2D sensor placement and boundary
estimation system for monitoring and tracking objects. The
disposition of the sensors is based on signal propagation and
area coverage and aims to track (with the minimum number of
sensors) a given set of objects modeled as Gaussian mixture
of models that are updated using a recursive distributive
expectation maximization algorithm. Extending the sensor
deployment to 3D, [18] provides an optimal range sensor
placement approach for minimizing the target localization
uncertainty using the Fisher information matrix.

With these goals and possible applications in mind, it was
developed a system1 for the estimation of the sensor constella-
tion that maximizes the observable surface area (cost function)
of a given set of target objects within a simulated scene
with occluding geometry. By relying on simulated sensors and
environments, the system allows quick evaluation of which
types of sensors and which environment regions maximize the
capture of 3D data for achieving better surface coverage of the

1https://github.com/carlosmccosta/sensor_placement_optimization

target objects, making it suitable as a decision support system
for helping the deployment of sensor constellations.

The development of the proposed system was split into 4
main stages. In the first step it was modeled the 3D scene
geometry of both the target and occluding objects. For testing
the capabilities of the system, 4 simulation environments
were created, targeting active perception and bin picking
applications. Then, a set of sensor populations was deployed
in each environment within regions of interest in which useful
sensor data could be retrieve (given the sensors characteristics
and physical constraints of the real sensors). Each population
was of a specific sensor type that simulated the main hardware
characteristics of commercially available sensors, such as the
depth camera resolution, its field of view, range of valid
measurements and acquisition rate. The third step included
the generation and analysis of the sensor data for each sensor.
This included the extraction of the target objects point clouds
using color segmentation (the target objects had a unique color
material that was not affected by lighting effects), followed
by the 3D projection of the 2D depth pixels using the pinhole
camera model, which were later on transformed into the world
coordinate system (for fast merging of data from different
sensors) and filtered with a voxel grid. This filtering step was
critical to ensure consistent surface area evaluation even when
sensors with different image resolution where observing the
same surface area at varying distances. This regular space
partition assumes that too many points within a small region
do not contribute to better 3D perception, and as such, a
given surface cell can be considered as observed if it has
at least one sensor measurement. This approach also allows
to very efficiently compute the surface area coverage (by
simply dividing the number of observed voxels by the number
of expected surface voxels). Finally, in the forth stage, the
best sensor constellation for each testing environment was
estimated. When the goal was the selection of a single sensor,
then the simulated sensor with the best surface coverage was
selected. On the other hand, if several sensors could be used,
a RANSAC approach was employed to estimate the N sensors
that when merging and filtering their measurements managed
to achieve the best surface coverage of the target objects.

The main contributions of the paper are the proposal of an
efficient sensor fusion method that relies on color segmentation
of the target objects followed by voxel grid merging, along
with a RANSAC approach that computes a constellation of
sensors that maximizes the surface area coverage of a set of
target objects deployed in simulated environments. Moreover,
for allowing future benchmarking of systems with similar
goals, the testing environments and the implementation were
made publicly available.

In the following section it will be presented how the 3D
testing environments were created, including the sensors mod-
eling and deployment. Then in Section III it will be introduced
the algorithms used to process the sensor data and estimate
the best sensor constellation, which will be supported by an
experimental evaluation that will be discussed in Section IV.
Finally, Section V will present the conclusions.

https://github.com/carlosmccosta/sensor_placement_optimization


II. 3D SCENE MODELING

For being able to compute the surface coverage of a given
set of simulated target objects that a given constellation of
sensors can observe, it is necessary to model the 3D geometry
of the scene objects. Moreover, the depth sensors must have
a realistic data acquisition formulation that is representative
of the real sensors. As such, the development of the proposed
system started with the 3D modeling of the scene geometry,
namely the environment objects and sensors 3D meshes using
Computer Aided Design (CAD) systems. Later on, several
types of depth sensors were modeled within the Gazebo
simulator2 in order to perform accurate 3D rendering of
the scene and generate representative sensor data taking into
consideration the specific characteristics of each type of sensor
(such as image resolution, field of view and depth range) while
also accounting for the occlusions that other objects in the
environment might cause in relation to the target models that
each sensor is trying to observe from its given view point.
The next sections will present the modeling of the simulation
worlds along with how the depth sensors were deployed within
plausible regions of interest that take into account where the
sensors can be placed in the real environment.

A. Environment modeling

For testing active perception and bin picking operations
it was modeled 4 different simulation worlds. Within these
environments it was deployed one or several target objects,
which were instances of a starter motor CAD model with a
unique green surface material that had no light effects, such
as shading and shadows.

The first environment (shown in Figure 1), focused on an
active perception task in which a starter motor was placed
on top of a trolley and was being occluded by a human
hand starting to grasp it. The goal of this environment was
to simulate an active perception task, in which we may need
to actively move a sensor within the environment to be able
to keep tracking the pose of a given object (such is the
case of objects that are being manipulated by humans in
which the hands are creating significant occlusions and a static
sensor constellation may not be able to observe enough surface
geometry to be able to perform pose tracking with accuracy).

On the other 3 worlds, the main goal was similar but
applied to bin picking operations. In this use case a static
overhead camera can provide a rough estimation of the target
objects and then based on the level of object recognition
confidence and how significant are the occlusions, we may
need to move a sensor attached to a robotic arm to several
poses in order to gather further sensor data to increase the
object recognition confidence and its pose estimation accuracy.
In the first bin picking world, the starter motor was inside a
large staking box together with an alternator and a differential
gearbox (displayed in Figure 2). The second bin picking
environment is a variation of the first in which it was added 3
more differential gearboxes into the stacking box in order to

2http://gazebosim.org

significantly increase the occlusion of the target object (seen
in Figure 3). Finally, the last bin picking environment (seen
in Figure 4) is another variation of the first environment in
which it was added 3 more target objects (one on top of the
trolley and two on the middle shelves).

Figure 1. Environment for active perception of a starter motor being grasped
by a human hand. The left image is showing a rendering from the Gazebo
simulator with the target object in green color while the right image is
displaying with blue spheres in Rviz the associated reference point cloud.

Figure 2. Environment for bin picking of one starter motor that is inside a
large staking box together with an alternator and a differential gearbox.

Figure 3. Environment for bin picking of one starter motor with 3 differential
gearboxes causing occlusions.

Figure 4. Environment for picking 4 starter motors with multiple occlusions.

B. Sensors modeling

Over the years it was developed a wide range of technolo-
gies for performing environment sensing. From the passive

http://gazebosim.org


Figure 5. CAD models of the 3D sensors with the display of the depth
image coordinate frames using the ROS convention of x-y-z -> forward-left-
up. Name of the 3D sensors from top left to bottom right: Kinect XBox
360, Asus Xtion Pro Live, Ensenso N35, Kinect XBox One, Orbbec Astra,
MultiSense S7, Intel RealSense SR300, ZED stereo camera.

image sensors to the active systems that probe the environ-
ment using projected patterns, lasers or Time of Flight (ToF)
devices. Given that the goal of the proposed system was
to perform active perception or environment monitoring, it
was modeled 8 different types of depth sensors (shown in
Figure 5) which relied on 3 types of environment sensing
technologies. One of them was the Kinect XBox One ToF
device, 5 were structured light sensors (such as the Asus
Xtion Pro Live, the Ensenso N35, the Intel RealSense SR300,
the Kinect XBox 360 and the Orbbec Astra) and 2 were
stereo vision systems (namely the MultiSense S7 and the ZED
stereo camera). Each of these depth sensors can be modeled
using the pinhole camera model, which allows to specify
the main unique characteristics of each sensor, such as the
depth image resolution (width and height in pixels), its Field
of View (FoV) (horizontal and vertical in radians) and the
range in which the sensor can retrieve valid measurements
(minimum and maximum in meters). Moreover, since this
camera model is implemented in most 3D rendering engines
and optimized in todays powerful Graphics Processing Units
(GPUs), the sensor data generation can be performed very
fast and efficiently using 3D rendering Application Program-
ming Interfaces (APIs) such as the Open Graphics Library
(OpenGL). This is the case of the Gazebo simulator, that
uses the Ogre3D3 rendering engine which in turn relies on
OpenGL. Besides camera modeling, Gazebo also allows to
simulate the sensor acquisition rate (specified as the number
of depth images generated per second), which is usually higher
on structured light sensors and lower on stereo vision systems.

C. Sensors deployment

Finding the optimal sensor constellation that maximizes the
observed surface area of a given set of target objects is a chal-
lenging combinatorial explosive problem when considering the
presence of occlusions within the environment. As such, for
making the estimation of the sensor disposition computational
feasible, the 3D continuous space was populated with a given
set of sensors within regions of interest while looking at a
specified observation point (with the sensor roll either 0º or
random). This approach allows to reduce the sensor pose

3http://www.ogre3d.org

estimation from a 6 Degree of Freedom (DoF) to a 4 DoF
problem (x, y, z position plus the sensor rotation along the
observation axis). Moreover, the continuous solution space
with an infinite amount of observation view points is reduced
to a bounded number in which the sensors can either be
deployed uniformly or randomly inside regions of interest.
This allows to sample the solution space with a reasonable and
representative amount of simulated sensor data for computing
a good enough sensor disposition for the problem at hand.

The proposed system allows the deployment of several pop-
ulations of sensors within a simulated world. Each population
contains a given number of sensors of the same type that can
be deployed uniformly / randomly within a box / cylinder
or in a grid / linear disposition. This allows to deploy the
sensors in the simulated environment spaces that represent
valid positions for the real sensors. For example, limiting the
possible sensor view points to the walls and ceiling of a room,
avoiding deploying sensors in areas in which they could not
provide any valuable sensor data or in which they could not be
physically placed due to spatial restrictions or safety reasons.

The populations of sensors that were deployed on the 4
simulation worlds were fine tuned to the particular goals of
each test. For the active perception environment, 450 sensors
were deployed close to the target object, on the top, right
and back side of the trolley (shown in Figure 6). This was
done to simulate the closest range in which a dynamically
moving sensor attached to a robotic arm could move (taking
into consideration the human safety and the sensor minimum
measurement distance, that was 0.2 meters).

Figure 6. Sensors deployment for the active perception environment.

For the single object bin picking environments, given that
the target object was inside the stacking box, the sensors were
deployed close to the target object (displayed in Figure 7), but
only on top of the trolley, on 3 layers (each with a different
type of sensor). In the world with minimal occlusions it were
deployed 100 sensors while in the world with significant oc-
clusions it were deployed 300 sensors. The sensor density was
increased because when there is a high amount of occlusions,
the best views have tighter observation regions, which could
be missed with a sparse sensor deployment.

For the multiple object bin picking environment, given that
there were several target objects (1 inside the stacking box, 1
on top of the trolley and 2 on the shelves of the trolley), it
were deployed 450 sensors across 7 populations (visualized in

http://www.ogre3d.org


Figure 8), 5 of them simulating fixed sensors on the walls and
ceiling and 2 of them simulating dynamic sensors attached to
a robotic arm above the trolley.

It should be noted that the visual sensor disposition shown
in Figures 6 to 8 was for human visual inspection only. During
the sensor data generation, the 3D models of the sensors are
hidden to avoid occlusion of the scene objects.

Figure 7. 2 sensors deployments for the 1 object bin picking environments.

Figure 8. Sensors deployment for the multiple object bin picking environment.

III. BEST VIEWS ESTIMATION

The estimation of the best views for a constellation of
sensors requires the ability to generate accurate sensor data for
each type of sensor and also an efficient approach to compute
the surface coverage area (cost function) that we are trying to
maximize. The next sections explain how the sensor data is
analyzed and also present the approaches used to estimate the
best constellation of sensors for a given simulation world.

A. Reference surface point cloud
The first step in the processing pipeline includes the genera-

tion of the multiple object reference point cloud that is built by
transforming the point cloud associated with the target CAD
model into each target object instance within the simulation
world (example shown in Figure 9), followed by the merge
of each object instance point cloud into a single point cloud
in the world coordinate system, which later on is filtered with
a voxel grid algorithm in order to perform a regular space
partition and extract the surface voxels centroids that contain
points. This approach allows to generate a reference point
cloud with a constant surface point density, which will be
critical later on when computing the surface coverage area
percentage achieved with a given sensor constellation.

Figure 9. Scene rendering from the Gazebo simulator with the 4 target objects
in green color (left image) along with the associated reference point cloud
that was generated for the 4 target objects (right image).

B. Sensors data analysis

After loading the simulation world 3D models, deploying
the sensors populations on the environment and building the
filtered reference point cloud, the proposed system generates
a color and depth image for every sensor. Then, for each pixel
in the color images that have the target objects unique color
(green), the corresponding pixel in the depth image is retrieved
and using the pinhole model equations shown in Equation (1),
the 3D point is computed from the 2D pixel coordinates and
the depth value (retrieved form the OpenGL Z buffer). Later
on, the 3D point is transformed from the sensor coordinate
system into the world coordinate frame (having all sensor data
in the same coordinate system allows fast merging of point
clouds from several sensors).

After processing all pixels of a given color image, the asso-
ciated point cloud in the world coordinate frame is filtered with
a voxel grid algorithm with a cell size tuned for the objects
geometry we are trying to observe (given that too many points
on a small area of a large object do not provide a significant
advantage for 3D perception and require more processing
time). This allows to perform a regular space partition for
extracting the centroid of each voxel containing sensor points.
This step is critical for allowing consistent evaluation of the
object(s) observed surface area percentage, given that sensors
with different resolution or at varying distances may generate
point clouds with different point density even when observing
the same surface area. Moreover, given that both the reference
point cloud and the sensor data point clouds were filtered in
the same coordinate frame and with the same voxel grid cell
size, the surface coverage percentage can be computed very
efficiently by simply dividing the number of surface points in
the filtered sensor data point cloud by the number of surface
points in the filtered reference point cloud.

In the end of the sensor analysis stage (presented in Algo-
rithm 1), each sensor is associated with a filtered point cloud in
the world coordinate frame containing only points belonging
to the target objects surface (example in Figure 10).

X =
(PixelColumn−XPrincipalPoint)× PixelDepth

XFocalLenght

Y =
(PixelRow − Y PrincipalPoint)× PixelDepth

Y FocalLenght

Z = PixelDepth

(1)



Figure 10. Environment for bin picking of 1 object with occlusions along
with the selected 3D sensor (left image) and with the generated point cloud for
the target object taking into consideration the environment occlusions (center
and right images, in which the green spheres are the points observed by the
3D sensor and the blue spheres are from the filtered reference point cloud).

Algorithm 1 Sensor data analysis
1: Input:
2: S ← deployed sensors
3: C ← target objects unique color
4: F ← cell size for the voxel grid filter
5: procedure SENSORANALYSIS(S,C, F )
6: q ← Empty . sensors filtered point clouds
7: for all s sensors in S do
8: c← RenderColorImage(s)
9: d← RenderDepthImage(s)

10: w ← GetSensorWorldPose(s)
11: u← Empty . target objects points
12: for all y image rows in c do
13: for all x image columns in c do
14: p← GetP ixel(c, x, y)
15: if p = C then
16: k ← GetDepth(d, x, y)
17: if InV alidRange(k, s) then
18: j ← 3DPoint(k, x, y, s)
19: m← TransformPt(j, w)
20: AppendPoint(u,m)

21: z ← FilterPointCloud(u, F )
22: AppendPointCloud(q, z)

23: return (q)

C. Estimation of the best sensors views

When only one sensor is needed for the task at hand (for
example when we are trying to perform 3D perception of the
environment in which the sensor is attached to a robotic arm),
the estimation of the best sensor can be performed by simply
selecting the one that achieved the best surface coverage area
percentage. On the other hand, if several sensors are available
or we want a single sensor to observe the target objects from
a set of N best views, then it is used a RANSAC approach to
estimate the constellation of sensors that can achieve the best
surface coverage. This approach allows to mitigate and bound
the combinatorial explosion that happens when we need to
estimate a high number of best views from a large population
of sensors. As can be seen in Algorithm 2, this approach runs
at most a fixed number of iterations. In each iteration, a set of
N sensors are chosen randomly, their sensor data is merged and
filtered, and if the surface coverage percentage achieved by this
set of views is higher than a given threshold, then the search is

stopped. In the end, it is returned the best sensor constellation
found along with its associated point could (with the merged
sensor data) and the best surface coverage percentage that was
achieved.

Algorithm 2 Estimation of the best N sensors views
1: Input:
2: N ← number of desired sensors
3: P ← point clouds from each deployed sensor
4: F ← cell size for the voxel grid filter
5: C ← minimum surface coverage percentage
6: I ← maximum number of iterations
7: procedure BESTSENSORSVIEWS(N,P, F,C, I)
8: s← Empty . best coverage sensors
9: p← Empty . best merged point cloud

10: c← 0 . best coverage percentage
11: i← 0 . current iteration
12: while i < I and c < C do
13: x← SelectSensorsRandomly(P,N)
14: m←MergePointClouds(P, x)
15: f ← FilterPointCloud(m,F )
16: k ← ComputeSurfaceCoverage(f)
17: i← i+ 1
18: if k > c then
19: s← x
20: p← f
21: c← k
22: return (s, p, c)

IV. EXPERIMENTAL EVALUATION

Several tests were conducted in the simulated environments
presented earlier for evaluating the ability of the proposed sys-
tem to find suitable constellations of sensors for maximizing
the observable surface area of a given set of target objects.

In the active perception environment introduced in Figure 1,
it was performed two tests with the sensor deployment shown
in Figure 6. In the first test it was estimated the best sensor
pose for observing a single target object (green starter motor)
being occluded by a human hand grasping it. By visually
inspecting the scene in Figure 11, it can be seen that the system
chose a very reasonable sensor pose, achieving a surface
coverage of 27.73%, despite the heavy object occlusions
introduced by the human hand. Moreover, when expanding
the number of sensors to 3 (in the second test), the system
managed to select a sensor constellation with a good spatial
distribution (shown in Figure 12) that managed to improve the
sensor coverage to 61.91%.

Moving to the single object bin picking environments,
presented in Figures 2 and 3, it was made four more tests
using the deployed sensors seen in Figure 7. In the first test
it was estimated the best pose for a single sensor to observe
the target object that was inside the stacking box, which had
large occlusions on its surroundings, but could be clearly
observed from above. As can be seen in Figure 13, the system
choose a suitable observation sensor that managed to achieve



Figure 11. Estimation of the best sensor pose for the active perception
environment with a 27.73% of surface area coverage (best sensor displayed as
a large red arrow, while the deployed sensors are shown as small coordinate
frames and the observed sensor data is represented with green spheres).

a surface coverage of 45.10%. When increasing the number
of sensors to 5 (in the second test), the system relied on more
sensor data and improved the surface coverage to 64.63% (as
seen in Figure 14). To make the active perception for this
bin picking use case more challenging, it was added three
occluding differential gearboxes on top of the target object
(scene shown in Figure 3) in order to create large occlusions
that significantly reduced the number of useful sensors in
the deployed populations (presented in the right image of
Figure 7). Analyzing the best sensor pose estimated by the
system (shown in Figures 10 and 15), it can be seen that the
pose chosen was very reasonable, achieving a surface coverage
of 19.27%. When increasing the number of sensors to 3, the
system deployed a constellation with good spatial distribution
and managed to improved the surface coverage percentage of
the target object to 31.19% (as can be seen in Figure 16).

Increasing the level of complexity even further, in the final
test it was added three more target objects to the simulation
environment (as presented in Figure 4) and the number of
populations with different sensor types was increased to 7
(shown in Figure 8). Analyzing Figure 17, in which the system
estimated a constellation of 10 sensors to observe the 4 target
objects, it can be seen that the system chose 4 sensors on the
front wall (which had a better observation area for the target
objects in the trolley shelves), 3 on the ceiling (for retrieving
sensor data for the target objects on top of the trolley) and
then for observing the remaining surface areas of the target
objects, it chose one sensor on the left wall, another on the
right wall and finally another one on the back wall, reaching
10 sensors in total and achieving a surface coverage of the
target objects of 43.93%.

These 7 constellations of sensors computed using Algo-
rithm 2 (which relied on a RANSAC approach), show that the
proposed system can estimate a suitable sensor configuration
for maximizing the observable surface area of several target
objects even on complex environments with significant occlu-
sions. Moreover, the system managed to compute useful solu-
tions in bounded and reasonable time (from less than a second
to a few minutes depending on the number and characteristics
of the deployed sensors) for a problem that is combinatorial
explosive in terms of processing time complexity.

Figure 12. Estimation of the 3 best sensors disposition for the active
perception environment with a 61.91% of surface area coverage.

Figure 13. Estimation of the best sensor pose for the bin picking environment
with a 45.10% of surface area coverage.

Figure 14. Estimation of the 5 best sensors disposition for the bin picking
environment with a 64.63% of surface area coverage.

Figure 15. Estimation of the best sensor pose for the bin picking with
occlusions environment with a 19.27% of surface area coverage.



Figure 16. Estimation of the 3 best sensors disposition for the bin picking
with occlusions environment with a 31.19% of surface area coverage.

Figure 17. Estimation of the 10 best sensors disposition for the 4 object
picking with occlusions environment with a 43.93% of surface area coverage.

V. CONCLUSIONS

The proposed sensor placement system was able to generate
sensor constellations for maximizing the observable surface
area percentage of a given set of target objects (starter motors)
that were deployed on a trolley in several testing environments
with increasing perception complexity and varying degree
of occlusions. Each constellation had several types of depth
cameras, that were modeling the main characteristics of eight
3D sensors, such as depth image resolution, field of view,
range of valid measurements and data acquisition rate. For
making this combinatorial explosive problem computational
tractable, a random sample consensus algorithm was employed
for determining which sensors should be selected from the
populations of 4 DoF poses associated with each sensor type,
that was either randomly or uniformly deployed over regions
in which the real sensors could be placed and provide useful
perception data. With a reasonable sensor count, the proposed
sensor placement system managed to compute a good sensor
pose in a few seconds and suitable sensor constellations in a
few minutes, which makes it suitable for active 3D perception
operations and sensor layout optimization tasks.

Future work could include the testing of the proposed
approach in conjunction with a object recognition system in
order to reliably perform object tracking when an operator is
manipulating a target object (by moving the sensor within the
environment using a robotic arm).
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