

Novel technologies to boost the shipyard industry

FORTH

Robert Sneesby CEng MIMechE

ORGANIZED BY THE EU HORIZON 2020 PROJECTS:

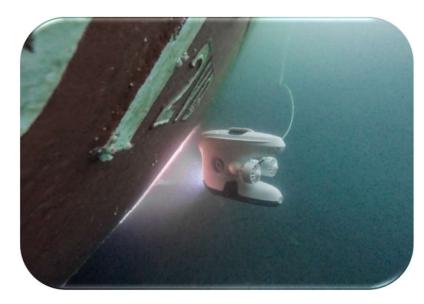
These projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements n° 101006860 (FIBRE4YARDS), n° 101007005 (RESURGAM), and n° 101006798 (Mari4 YARD).

The Resurgam Project

The Challenge

Develop a Process that can:

- Inspect ship defect
- Clean ship defect



- > Friction Stir Weld a repair patch onto the side of a ship
- All remotely operated underwater (J4IC) Full presentation to follow

Inspect/Clean/Scan Defect (UoL)

*Images shown are not of UoL's final products

1 – Inspect DefectTo know extent of damage and require cleaning.

2 – Clean Defect To allow accurate scanning.

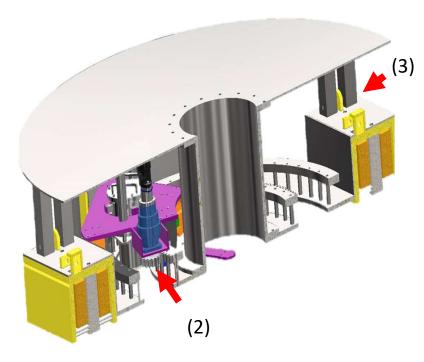
3 – Scan Defect To allow accurate manufacture of repair patch.

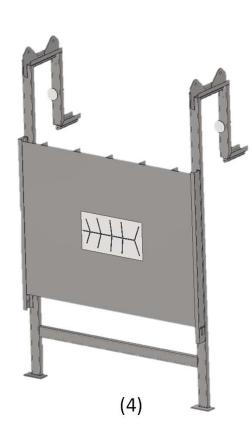
Scan – Development So Far (UoL)

FSW Repair Tool – Design Parameters

TWI's testing enabled them to provide Forth with the necessary operating parameters the tool must work to:

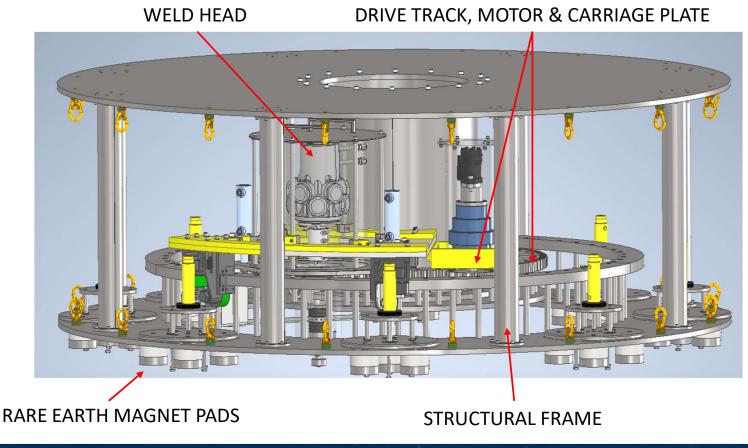
4.6. DH36 steel welded in water. Lap weld geometry.

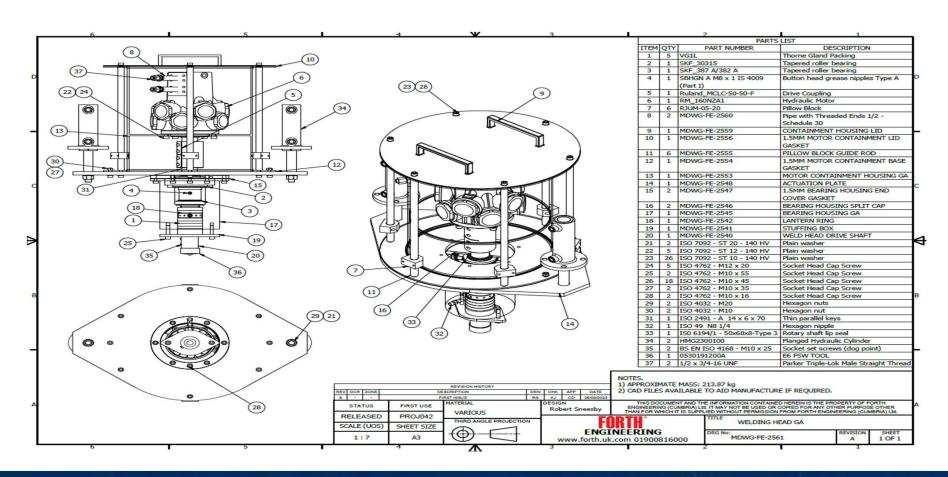

Steel thickness (mm)	Tool type	Control regimen	Tool rotation (RPM)	Welding speed (mm/min)	Tilt angle (degrees)	Measured forces (kN) *			Measured Torque	Calculated energy input	UTS	Charpy Impact
						Fx	Fy	Fz	* (Nm)	kJ/mm	(MPa)	Joules at -XX C
4mm patch 15mm hull plate	Element Six 2188-4 6mm	Force at 30 kN	200	100	0	1	5	30	246	N/A	N/A	N/A
4mm patch 15mm hull plate	Element Six 2188-4 6mm	Force at 32.5 kN	200	100	0	2	4	32.5	253	N/A	N/A	N/A
4mm patch 15mm hull plate	Element Six 2188-4 6mm	Force at 35 kN	200	100	0	4	6	35	225	N/A	N/A	N/A
4mm patch 15mm hull plate	Element Six 2188-4 6mm	Force at 40 kN	200	100	0	4	6	40	212	N/A	N/A	N/A


FSW Repair Tool - Concept Design

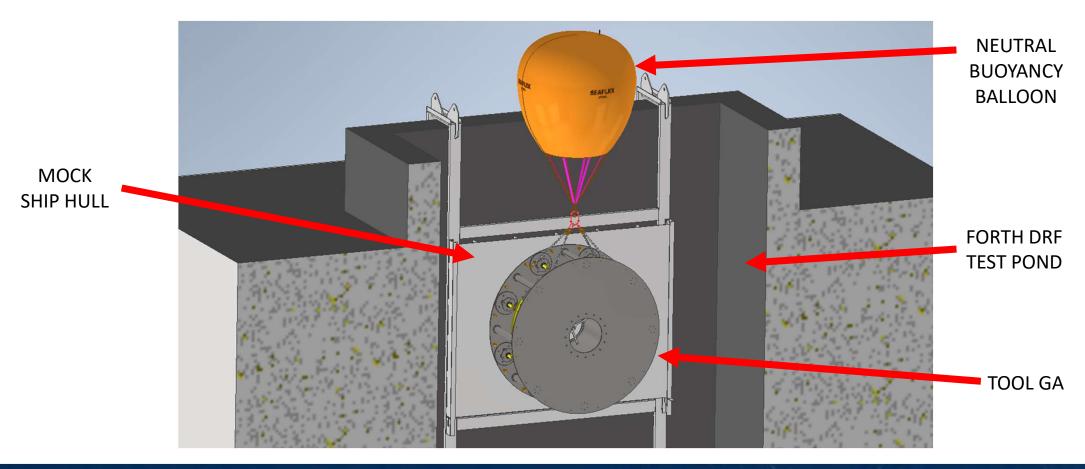
Design Split into 4 Main Sub-Assemblies:

- Operational Head
- Track Drive System
- 3. Tool Magnet Frame
- 4. Ships Hull

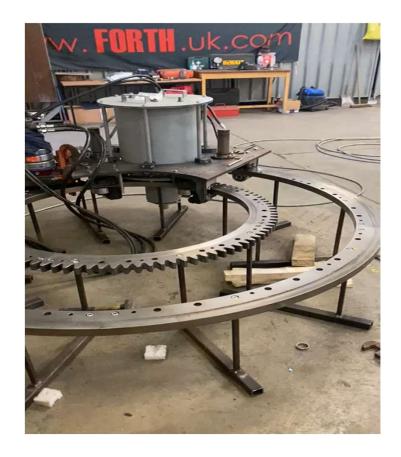




FSW Repair Tool - Detailed Design - GA


- The 4 Concept Design Subassemblies were assessed at Concept Design Stage Gate Review.
- The highlighted recommendations were taken forward into Detailed Design and combined into final design assembly.

Perform Friction Stir Weld - Detailed Design - Weld Head

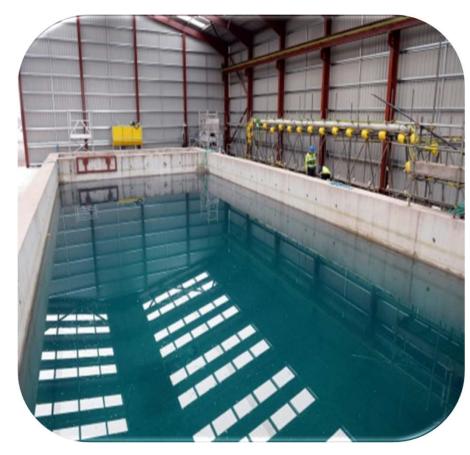

FSW Repair Tool - Detailed Design- Full Test GA

FSW Repair Tool - Manufacture - Progress So Far

- Once the Design
 Verification Checks had been completed and Detailed Design Stage
 Gate approved, the Project could then be taken into manufacture.
- These videos show the initial stages of the final build, allowing us to perform validating tests prior to full assembly.

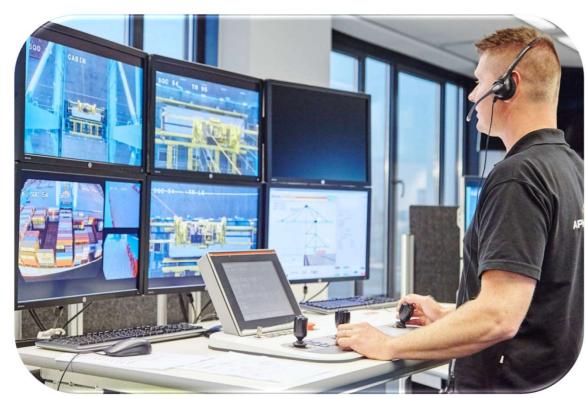
FSW Repair Tool – Remaining Actions

Implementation


- Delivery of remaining Parts and Material
- 2. Fabricate Frame and Ships Hull
- Assemble Tool GA
- 4. Dry Weld Test (Facing Flat)
- 5. Wet Weld Test (Internal Factory Acceptance Test (FAT 1))

Handover

 Demonstration Day Wet Weld Test (Site Acceptance Test (FAT 2))



Remote Control of ROVs and FSW Tool

Further Potential Uses

Manless Storage Tank Repairs

In Situ Wind Turbine Tower Repairs

Underwater External Pipe Repairs

FSW Repair Tool - Challenges So Far (And Opportunities)

- Significant staff turnover.
- Electromagnets major risk due to required economic investment and likely electromagnetic interference – Suction Cups reviewed and discounted, progressing with electromagnets.
- Final Deflection of Frame, was not suitable for Carriage bearings, will require a large Strong Back beam in final construction.
- Falling GBP/Exchange Rate against original budget & Ongoing Import/Export Issues

Opportunities Realised

- ➤ Moving to a fixed track design over full 3D router, meant the elimination of risk of positioning errors. The track design also makes the tool much more easily scaled for different sized repairs.
- ➤ Suitability of rare earth magnets

FSW Repair Tool - Frequently Asked Questions (FAQs)

- This prototype and mock hull are flat, but it won't be like that on the boat needing repair?
 - How is the patch deployed on the ship?
 - Any other questions?

Robert Sneesby CEng MIMechE MAPM Forth Engineering

robert.sneesby@forth.uk.com

